ADO Goldkante GmbH & Co. KG Zimmersmühlenweg 14-18 61440 Oberursel / Taunus

TEST REPOR	T 371/20	Pie	03/07/2020	page 1 of 3
Customer: Assignment from: Received:	Ms Oda Nimmer 22/06/2020 23/06/2020			
Assignment:	difference 10 K, c Alambeta method 2. Determination of t 10 K, contact pres n =5, right side an 3. Determination of s	ontact μ , $n = 5$, he ther soure of d rever specific soure of	heat capacity c _v , temp f the plunger 10 cN/cn	r 10 cN/cm ² , side erature difference ² , Alambeta method, perature difference
Samples:	1 piece of fabric artic	cle 2628	3	
Sampling:	The samples were ta	aken by	the customer.	
Realisation of the test:	The samples were ta mentioned above.	aken ur	d were tested by the p	prescriptions

<u>Test results:</u> <u>1. Specific thermal conductivity λ </u>

 λ = Quantity of heat, which is passing a material with 1 m² surface and 1 m thickness per second, if there is a temperature difference of 1K between both sides.

	mΜ	/	mW	Milliwatt
λin			m	meter
	m	K	K	Kelvin

	right side	reverse side
_ X ₁	47.8	44.5
X _{max}	51.2	45.8
X _{min}	43.7	42.7

The lower the value of the specific thermal conductivity, the less heat is transported and dissipated, the better the thermal insulation.

2. Thermal resistance r

r = Temperature difference between the upper side and the reverse side of a material with a surface area of 1 m² and a given thickness, if a heat flux of 1 Watt is passing through.

r in	mK m² W	mK Millikelvin m² square mete W Watt	er
		right side	reverse side
— X ₁ X _{max} X _{min}		19.8 21.5 18.4	22.0 22.8 21.5

The higher the value of the heat resistance, the poorer the heat is transported and dissipated.

3. Specific heat capacity

 c_v = volumic heat storage capacity of a material

c_v in	mW s 10 ³ K m ³	mW Milliwatt s seconds K Kelvin m ³ cubic meter	
		right side	reverse side
— X ₁ X _{max} X _{min}		169.6 186.7 155.2	301.2 314.4 283.1

The higher the value of the heat capacity, the more heat can be stored in volume.

The testing results are exclusively related to the sample under conditions as received.

Without written permission of the testing laboratory it is inhibited to copy this report partially.

Dr. Klobes Head of the Testing Centre